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EXECUTIVE SUMMARY

e Objective 1: Create the software tools needed to simulate gene, protein, and
metabolite interactions in a CLE.
o A software program in Matlab was developed and transitioned to Air
Force collaborators at Wright Patterson Air Force Base.
o The program stochastically models biochemical processes including gene
transcription, mRNA translation, and enzymatic, binding, and transport
reactions.

e Objective 2: Using minimal cell ideas from the literature as a starting point,
identify a set of genes and gene products that make a theoretically viable cell and
conduct simulations which explore its viability under a ‘range of external
conditions.

o Several models of a Cell-Like Entity (CLE) were developed. One
demonstrates macroscopic effects of molecular level stochastic
fluctuations, one explored two approaches to simulating a common
enzymatic reaction, and one was designed to detect an external chemical.

o These models were explored through simulations, but are not considered
complex enough to test CLE viability.

e Objective 3: Add a specific designed function to the minimal cell and, through
simulations, test whether this change altered the cell’s viability and identify the
conditions under which the task is successfully performed.

o The level of stochastic fluctuations in the detection CLE has been
1 measured under baseline conditions.
| o A determination of parameter values that enhance the performance of the
task was performed.
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TECHNICAL SUMMARY

CLE Simulation Software

The simulation software (called Biomolecular Network Simulator or BNS) is written in
Matlab version 6.5 and uses the Gillespie stochastic algorithm (Gillespie DT, J Phys
Chem, 81: 2340-2361, 1977) to simulate a system of biochemical reactions in a volume.
The BNS engine consists of 46 Matlab files contained in the main code directory.
Additional files are used to define the model. We have used the software to create and
run simulations of theoretical and experimental CLEs in cooperation with partners at
WPAFB. Below I describe the key attributes of the BNS version 1.2 software. Appendix
1 has a roadmap of the files and functions called.

General Input Considerations
A model is defined in a seties of text files that specify the names and initial amounts of
each compound, the reactions, the rate constants for each reaction, and general constants

such as the total duration of the simulation. The folder structure used to define a model
will be helpful:

- BNS root directory
46 engine files
- model 0001 directory
reactions_0001.m
reactions_0002.m, etc
- parameter_set_0001 directory
general _constants.m
storing_and_plotting.m
- initial_compound_numbers directory
cmpd _defs 0001.m
cmpd_defs 0002.m, etc.

. .- reaction_constants.directory .
reaction_constants 0001.m
reaction_constants 0002.m, etc.

- output directory
default out.mat
output_0001.mat, etc.
- parameter_set_0002 directory, etc.
- model_0002 directory, etc

Any name with a © 0001’ or *_0002’ in it can be any text name desired — i.e. the ¢ 0001’
is not required. The other names are fixed.

This folder system separates the model reaction structure from the numerical constants.
The model reaction structure is the definition of the connections between compounds,




contained in the reactions_0001.m, reactions_0002.m, etc files. This part of a model
could often be represented as a pictorial schematic of reactions.

The numerical constants are contained in the files and subdirectories under the
parameter_set_0001 directory. These constants include the initial compound numbers,
reaction rate constants, general constants such as the simulation time and volume, and the
list of which compounds to store and plot vs. time.

This folder structure was chosen so that one can archive the models and simulation
results of multiple modeling sessions by multiple investigators. This is achieved by
keeping the numerical constants and simulation output in a single directory that can be
saved as a new parameter directory whenever changes to the constants are made. The
same idea holds for multiple model directories as one changes the connections in the
network being simulated.

After setting up the reaction structure and constants, the model is run by typing ‘bns’ on
the Matlab command line while in the BNS root directory. The program then asks 4
questions: (1) name of model directory; (2) name of parameter directory; (3) name of
output file; and (4) choice of random number generator seed. One is able to rerun a
simulation with the exact same sequence of random numbers as a previous simulation if
desired.

The general constants.m file contains values for constants that affect the overall
execution of the simulation. The following parameters are defined in this file through
simple assignment statements (with some example values filled in). Comments are in
italics.

time_info.time start = 0;
time_info.time end = 1000
The beginning (usually zero) and end times for the simulation in

seconds.

time_info.num_runs = 1;
The number of times to run the entire simulation.

time_info.init_timestep = 10;

time_info.timestep_max = 10; i
The initial and maximum time step in seconds. The time chunks
determined by these parameters are used for storing, plotting, and
parallelization of execution.




scaling factor =1,
Scale the problem up in terms of volume and number of molecules in
the simulation. Best to use positive integers in order to maintain
integer numbers of molecules.

volume = scaling_factor .* 8e-16;
The volume being simulated in m’, multiplied by the scaling factor.
Combined with the number of molecules, this determines the
concentrations of the compounds.

stochastic = 1;
If stochastic = 1, then use a stochastic algorithm. If stochastic = 0,
then use a continuous, deterministic solver. The continuous solver
tends to have problems with initial compound numbers of zero.

stoch_algor = 1;

Choice of stochastic algorithm.

1 = mine, which is a hybrid between the Gillespie First Reaction
Method (Gillespie DT, J Comput Phys, 22: 403, 1976) and the
modifications proposed by Gibson and Bruck (Gibson MA and
Bruck J, J Phys Chem A, 104: 1876-1889, 2000).

2 = Gillespie Direct Method.

The initial compound numbers directory contains files such as cmpd defs 001.m that
specify the names of the compounds and the initial number of molecules of those
compounds. Each file contains assignment statements of the following form:

ATP =700000;
ADP =4000:

B Teoe o

There can be any number of files in the directory, and any number of compounds may be
defined in each file. The separate files are merely to help organize the data. The names
of the compounds must match the names of compounds used in the reactions_001.m files,
and the program checks to ensure that this is true.

The details of specifying the connections in the biological network, specifying the output
options, and specifying the reaction constants will be presented in the sections below.




Model Results — Qutput
The program can create plots during the simulation run and save the simulation results to

disk. The storing_and_plotting.m file contains the following choices (with some example
choices filled in). \

plot_info.output_directory =[J;
Directory to store the output from a simulation run. An empty matrix here will use a
directory called 'output' under the parameters directory. Otherwise input the entire
path to the (already present) output directory.

output filename = 'default out’;
This next setting chooses a default name for the output file. A dzalogue after starting
the program will allow the user to choose a different specific file name for the output
data within the above folder. 'mat' will be appended to the specified file name.
Currently the following variables are saved in this ‘mat’ file: ‘data_time’ (see
below), ‘data cmpds’ (see below), ‘randseed’, ‘plot_info’, ‘time info’, and
‘empd_info’. The last 3 entries are structures that store multiple variables related to
their respective titles.

plot_info.monitor cmpds = {'ATP";

'‘GTPY

‘MrnaGSHA'";

'GSHA";

'‘gammaglutamylcysteine';

'‘Cysteine';

'Glutamate';

‘MrnaGSHA_Ribo';};
Stores the time sequence of values for these compounds in data cmpds{i}(.k).
data_cmpds is a cell vector where each cell contains a 2-dimensional matrix where i
specifies the number of the simulation run, row j corresponds to the time in
data_time, and column k specifies the compound. Time data (the specific time points
at which the compound data is saved) is always saved in data_time{i}(j). Compounds

not specified in plot_info.monitor_compounds do not have their time sequence data
saved.

plot_info.plot cmpds{1} = {'ATP''GTP'};

plot_info.plot_cmpds{2} = {'MmaGSHA''GSHA' MmaGSHA_Ribo'};

plot_info.plot cmpds{3} = {'gammaglutamylcysteine'};

plot_info.plot cmpds{4} = {'Glutamate' 'Cysteine'};
Specifies which compounds to plot and which figures contain which compound. Each
plot_info.plot_cmpds{number} is in the same figure window. One can use
plot_info.plot_cmpds = {'all'} if you want each monitor_cmpds to be in own figure
window. Each compound to be plotted must also be listed in
plot_info.monitor_compounds .

plot_info.plot_interval = 200

plot_interval = -1 means do no plots.

plot_interval = 0 means plot at end of each successful timestep (so most likely the
time axis won't be at regular intervals)

plot_interval = any other positive number means make a plot when time exceeds the
next multiple of the positive value.

plot_interval = any negative integer other than -1 means plot at each timestep that is
a multiple of the abs value of this value (i.e. -3 means create the plot at the
end of every 3 successful timesteps




Finally, a separate program called ‘bns_plot.m’ contained in the BNS engine directory is
able to load the data stored in the output file (as specified in output_filename above) and
recreate the plots that were generated during the simulation run.




Reaction Types

Several reaction types have been defined and the code is designed to be extensible so that
more reaction types can be defined. Each reaction requires two files to specify. The
model reaction structure is specified in reactions 0001.m, for example. This file
specifies the left and right side of a reaction, and the type of reaction. The second file
(for example reaction_constants_0001.m) specifies the numerical constants associated

with that reaction, typically the reaction rate parameters and the reaction group for that
reaction (see next section).

Four reaction types have been defined so far: (1) Nth-order; (2) binding; (3)
Transcription and Translation, version 1; and (4) Generalized Michaelis-Menten. It
should be noted that strictly speaking, only the binding reaction is valid in all cases when
using a Gillespie stochastic algorithm. However the use of single reaction equations to
simulate multiple real-world reaction events has been considered (Rao CV and Arkin AP,
J Chem Phys 118:4999-5010, 2003) and is an area of current research.

The following is a summary of the defined reaction types with an example of how the file
specifies each reaction. In the descriptions below, a; is the propensity term for the
Gillespie algorlthm It is proportional to the rate at which a reaction proceeds and has
units of ™!

Nth-order
The general form for an n-th order reaction is

k

Na AT+ Np B"+N¢ C° —><_kf__ Np D'+ Ng E" + Np FY (Eq. 1)
T

where A, B, C, D, E, F are compound names; N4, Ng, N¢, Np, Ng, and Nf are numbers of
each compound consumed in the reaction; q, 1, s, t, u, v are exponents reflecting the
contribution of each compound to the rate, and kr and k; are the forward and reverse rate
constants. The units for k¢ and k; will depend on the total order of the corresponding
substrates, where the total order n for the forward reaction is q+r+s, and the total order
for the reverse reaction is t+u+v. If the total order is 1, then the units for k are s™. If the
total order is 2, then the units for k are liter/s. There can be any number of substrates on
the left or right side, and the orders do not have to be integer.

The nth-order reaction is a generic, flexible format that can be used to specify any
transformation of one set of compounds to another. It is used when there isn’t a more

specific reaction type available for a particular reaction.

The above designation creates 2 reactions. The propensity for the forward reaction is
given by

a; =k * NTA%* NTg" * NTC* / vol™P, (Eq. 2)




where n = q+r+s and NT, is the total number of molecules of compound A in the system
(not the total number used for a single execution of this reaction Ny), etc.

The propensity for the reverse reaction using D, E, F follows the same form.

The following is a section of code from a reactions 001.m file which specifies an n-th
order reaction

rxDegrade MrnaGSHA.type = 'nth-order’,
rxDegrade MrnaGSHA.lhs = { 1 'MrmaGSHA' 1;
_ 1 'RNase' 1;};
rxDegrade MrnaGSHA.rhs = { 377 'UMP' 0;
369 'CMP' 0;
381 'AMP' 0;
429 'GMP' 0,
.-~ 1'RNase' 0;}; =

The name of the reaction is ‘rxDegrade MrmaGSHA’. This is the part before the period
in the Matlab structure above.

Then there are 3 subfields for this structure, ‘.type’, ‘.lhs’, and .rhs’.

The ‘.type’ subfield is used to specify a string designating the reaction type,
which is ‘nth-order’ in this case.

The °.1hs’ subfield is used to specify the left hand side list of reaction components.
It is filled in with a cell array (as indicated by the curly braces). Each row of this
cell array has 3 values. The first value is the number of that compound that is
consumed or produced when the reaction executes, and corresponds to Ny etc.
For example, 377 molecules of UMP are produced when the reaction proceeds
from left hand side to right hand side. The second value in each row is a string
designating the name of the compound. The third value of each row is the order
of that compound: “Note ‘that these orders aré relative orders. They are only
relative to each other in this file. The exact value of q, 1, s, t, u, v to be used in
Egs. (1) and (2) is determined by scaling each of the orders specified in this file so
that the total order equals the total order specified in the reaction constants.m file
as discussed below.

The ‘.rhs’ subfield specifies the right hand side list of reaction components in a
manner identical to the ‘.1hs’ subfield.

The following is a section of code from a reaction_constants 0001.m file for the above n-
th order reaction.



rxDegrade MrnaGSHA .ltor.rate = le-19;
rxDegrade MrnaGSHA ltor.order = 2;
rxDegrade MrnaGSHA .rtol.rate = 0;
rxDegrade MrnaGSHA .rtol.order = 0;
rxDegrade MrnaGSHA.rxn_grp = 1;

The name of the structure (the part before the period above) must match the name of the
reaction from the reactions_0001.m file.

The “.Itor’ subfield specifies constants for the left-to-right reaction, or the .lhs’ to ‘.rhs’
direction using the nomenclature above. The ‘.rtol’ is for right-to-left.

Each direction has a rate value which corresponds to k¢ or k; in Egs. (1) and (2). Note
that in the example above, ‘.rtol.rate’ is set to zero, meaning the reaction does not
proceed from right-to-left, and in fact the code parses it such that this reaction is not even
entered into the list of possible reactions.

Each direction has a total order value which corresponds to either n = q + r + s for the
left-to-right case, or n =t + u + v for the right-to-left case. As indicated above, this order
is the overall order for the reaction, and is used to scale the order values for each
compound specified in the reactions_0001.m file so that the total order equals the value
specified here.

Finally, the ‘.rxn_grp’ subfield is used to assign this reaction to a reaction group, which
will be discussed in the next section.

Binding

The binding reaction type is exactly the same as an nth-order reaction with the
restrictions of exactly two compounds on the left side, one compound on the right side,
exactly 1 of each compound is consumed or produced, and all the exponents are equal to
1. The reason a‘separate binding reaction type is ¢redated is for execution speed. Binding -
and unbinding is a very common phenomenon, and the extra code required to execute an
nth-order reaction slows the execution of an nth-order reaction compared to this binding
reaction type.

ke
A+B _* C (Eq.3)
k,

Creates 2 reactions as long as no rate equals zero. Left-to-right is a 2™ order reaction,

and right-to-left is a 1% order reaction. Units for krare Liter/s. Units for k; are s

The propensity function for the forward (binding) case is

aj = kf * NTA * NTB / VOl, ) (Eq. 4)



and the reverse (unbinding) case is
aj — kr * NTc. (Eq. 5)

An example reactions 0001.m code section is

rxGeneGSHA_T7.type = 'binding';

rxGeneGSHA_T7.lhs = {'GeneGSHA';
T35

rxGeneGSHA_T7.rhs = {'GeneGSHA_T7';};

The *.type’ subfield is ‘binding’.

The ‘.lhs’ and ‘.rhs’ subfields are simpler compared to nth-order, and only require the
name of the compounds.

An example reaction constants 0001.m code section for a binding reaction is
rxGeneGSHA_T7.ltor.rate = 1e-18;

rxGeneGSHA_T7.rtol.rate = 10;
rxGeneGSHA T7.rxn_grp =1;

The “.ltor.rate’ corresponds to k¢ in Egs. (3) and (4). The ‘.rtol.rate’ is k, in Egs. (3) and
).

Transcription and Translation, version 1
This reaction type is used for transcription and translation reactions. The version 1
indicates that it is a crude, but fast executing, approach for these complex processes.

k
A template + [Ny B+N,C+NpD] —> NpE+N;F+NgG (Eq. 6)

Units of k are Liters/s. This reaction type creates a single reaction. The reverse process
isn’t possible. The first substrate on the left hand side is the template molecule, and only
1 is consumed. The rest of the substrates in the brackets are the building blocks. There
can be any number of these building blocks. Typically these are the nucleotides (for
transcription) or the amino acids (for translation).

There can be any number of products on the right hand side. Typically the list of
products includes a single copy of the primary result of transcription or translation — the
messenger RNA or the protein, respectively. It also typically includes some form of the
template molecule, although it is not necessarily the identical compound as the
A_template from the right hand side due to other changes.

The propensity function used is

8=k * NT4_temptate * (1/ (1/NTg + I/NT¢ + 1/NTp) ) /vol (Eq. 7)




where again, NT represents the total number of each compound in the entire system. If,
for example, NTy is less than Np, then a; is set to zero. Note that the form for this
‘propensity function is quite arbitrary. It was chosen because it somewhat reflected the
fact that a shortage of a single substrate can greatly reduce the overall rate of the reaction.

A reactions 0001.m code section for this reaction follows.

rxTransc_GeneGSHA .type = 'transv1';
rxTransc_GeneGSHA.lhs = {1 'GeneGSHA_T7';
377'UTP
369 'CTP";
381 'ATP;
429 'GTP%};
rxTransc_GeneGSHA.rhs = {1 'MmaGSHA'";
1 'GeneGSHA';
1'T7 e
1556 'PPi';};

The “.type’ is the string ‘transv1’.

Each row in the cell array for both .1hs’ and ‘.rhs’ contains two entries. The first entry is
the number of molecules consumed or produced by a single execution of this reaction.
The second entry is the string for the name of the compound. The first row in the list of
¢.Ins’ is the template molecule and only 1 molecule of that is allowed.

A reaction_constants_0001.m code section follows.

rxTransc_GeneGSHA ltor.rate = le-18;
rxTransc_GeneGSHA.rxn_grp = 1;

Only two values are needed — the rate which corresponds to k, and the reaction group.

Generalized Michaelis-Menten

This is a generalized Michaelis Menten reaction type. It is intended to mimic the
saturation kinetics that occur in a standard Michaelis-Menten enzyme catalyzed equation,
but extended to the possibility of more than a single substrate.

Enzyme™ + Np D¥"P + NE E¥™F + NF F*F (Eq. 8)

The first substrate is the enzyme molecule and only 1 is involved in the reaction. The
parameters k2f and k2r correspond to the specific maximum rate of the forward and
reverse reaction when the quantities of all other non-enzyme substrates are high. The
units of k2f and k2r are liter/s. Note that in an enzyme reaction, the Enzyme usually is
both a substrate and a product, although it isn’t strictly required that they be the exact
same compound.




The rest of the substrates are governed by a km constant which has units of
molecules/liter. In other words, at low numbers relative to km * volume, the reaction rate
is linear with the number of molecules, and at high numbers relative to km * volume, the
reaction rate saturates.

This reaction type creates 2 reactions, unless one of the k2 rates equals zero.
The propensity function for a gen-mm reaction type in the forward direction is:

a; = k2f * (NTEnzyme / vol) * (NT4 / (NT4 + kmA * vol) ) *
(NTg / (NTp + kmB * vol) ) * (NT¢ / (NTc + kmC * vol) ) (Eq. 9)

where again NT refers to the total number of each compound. The same form is used for
the reverse reaction. This propensity function simplifies to the standard Michaelis-
Menten rate when the left and right hand sides each contain a single Enzyme and a single
other compound (substrate on left-hand-side, product on right-hand-side).

The reactions 0001.m file looks like:

rxGSHA .type = 'generalized-mich-ment';
rxGSHA. lhs = { 1'GSHA';

1 'Glutamate';

1'ATPY

1 'Cysteine';};
rxGSHA ths = { 1 'GSHA',

1 'ADP;

1 'Pi

1 'gammaglutamylcysteine'};

The “.type’ string is ‘generalized-mich-ment’

The “.Ihs’ and ‘.rhs’ subfields follow the same format as the corresponding subfields in
the Transcription and Translation, version 1 reaction type. The first row in each cell
array is the enzyme molecule, and only 1 molecule of that is allowed.

The reaction_constants_0001.m file looks like:

rxGSHA .Itor.rate k2 = 1e-15;
rxGSHA ltor.rate.km(1) = 1el9;
rxGSHA ltor.rate.km(2) = 1e20;
rxGSHA ltor.rate.km(3) = 1el9;
rxGSHA .rtol.rate.k2 = 0.0;
rxGSHA. rtol.rate. km(1) = 1el9,
rxGSHA .rtol.rate.km(2) = 1e19;
rkGSHA .rtol.rate.km(3) = 1e19;
rxGSHA.rxn_grp=1;




The ‘ratek2’ and the ‘.ratekm(n)’ subfields are the k2 and km constants described
above.




Reaction Groups

The CPU time required to simulate a complex biological network using the Gillespie
algorithm may be very long. A stochastic simulation of biochemical events using the
Gillespie algorithm takes place in a defined volume. Following the execution of a single
event, the probabilities of all affected events need to be recalculated and then the next
event is randomly chosen according to these updated probabilities. One common
approach to speed up simulations is to use parallelization. However the Gillespie
algorithm does not lend itself well to parallelization, since each event must be executed
sequentially.

A summary of the Gillespie stochastic simulation algorithms will aid in understanding the
reaction group implementation. The following is Gillespie’s Direct Method.

Step O: Initialization. Set time t = 0. Calculate the propensity for each reaction, a;,
based on the number of molecules of the substrates and the. reaction rate
constants. - '

Step 1: Sum the a; values from each reaction to create a; sym.

Step 2: Determine the time of the next reaction, thext = (1/8;, sum) * log(1/r1), where 1; is
a randomly generated number between 0 and 1.

Step 3: Determine which reaction p is next according to

a1 U
Zai < rZai,sum < Zai ’
i=1 .

i=1
where r; is a randomly generated number between 0 and 1.
Step 4: Adjust the number of molecules according to reaction p.
Step 5: Set the time t =t + t;ey.
Step 6: Calculate a new propensity a; for each reaction that was affected by Step 4.
Step 7: Return to Step 1.

The following is the hybrid methiod that is used when stoch algor = 1 is chosen in
general_constants.m. It uses Gillespie’s First Reaction Method as a base, but implements
reusable randomly generated “times as done in Gibson and Brick’s Next Reaction -
Method.

|
|
} Step 0: Initialization. Set time t = 0. Calculate the propensity for each reaction, a;,
‘ based on the number of molecules of the substrates and the reaction rate
| constants. Determine a putative time for each reaction according to
; ti,putative = (1/31) * log(l/rl)
| Step 1: Let p be the reaction with the next ti, puative-
| Step 2: Adjust the number of molecules according to reaction .
Step 3: Set the time t = t,, putative-
Step 4: Calculate a new propensity a; for each reaction that was affected by Step 2.
Step 5: Determine a new putative time for each reaction whose a; changed in Step 4
b, putative =t + (1/a;) * log(1/1y).
Step 6: Return to Step 1.




An idea to utilize parallelization is to divide the reactions into groups, where each
group’s reactions are executed on a separate CPU. Each reaction is given a reaction
group number in reaction_constants.m. Due to dividing reactions into groups (and hence

CPUs), some compounds may be used in multiple reaction groups. The process then is as
follows.

Step 0: Initialization. Set time t = 0. Choose a value for timestep. Calculate the
propensity for each reaction, a;, based on the number of molecules of the
substrates N; and the reaction rate constants. Determine a putative time for
each reaction according to

ti,putative = (1/31) * 10g(1/r1)
Make a backup copy of a; and t;, putative-

Step 1: For each reaction' group, set tiocal = t. - Also, make a copy of the number of
molecules. Call this the local copy of the number of molecules, which is local
to each reaction group.

Step 2: For a single reaction group, do the following:

A. Let p be the reaction with the next t; puwsive Of all the reactions within
the reaction group.

B. If t, putative <t + timestep, then go to step 2C. Otherwise go to Step 2A
and repeat all of Step 2 for the next reaction group. After every
reaction group has executed Step 2, move to Step 3.

C. Adjust the local copy of the number of molecules according to reaction
p. Keep track of the changes in molecule number that occurred due to
events in this reaction group.

D. Set tiocal = ty, putative-

E. Calculate a new propensity a; for each reaction that was affected by
Step 1C. Use the local copy of the number of molecules in this
calculation.

F. Determine a izew putative time for-each reaction whose a; changed in
Step 1E

tl putative = tiocal + (1/al) * 10g(1/r1)
G. Return to Step 2A.

Step 3: Total up the changes molecule numbers due to changes in all reaction groups
to arrive at a new proposed value for the total number of molecules of each
compound, N, proposed = Nj + Nj, changed, Where N; is the number of molecules in
Step 1, and N;, changed 15 the total changes in molecule numbers from step 1D for
all reaction groups. Note that N; will be the same for each reaction group that
uses compound N. It is a non-local value. N;is the most recent correct value
for the numbers of each molecule, and arises from the conclusion of the most
recent successful timestep (Step 5).




Step 4: If any Nj, proposed 1S negative or changed “too much” from Nj, then reject all
changes that occurred during timestep, reduce the value of timestep, and go to
Step 1. Thus, reject N;, proposed and use Nj. Also let t remain unchanged. Also
reset each a; and t; puutive to the backup copies. If Nj, proposed 1 acceptable, go to
Step 5.

Step 5: Set Nj = N;, proposed-

Step 6: Set t =t + timestep.

Step 7: Increase the value of timestep if all Nj, changea Were “small” relative to Nj in Step
4,

Step 8: Calculate the propensity for each reaction, a;, based on the number of
molecules N; of the substrates and the reaction rate constants. Determine a
putative time for each reaction according to

ti, putative = (1/a;) * log(1/1y).
It is necessary to do this for all reactions since Nj may have been changed by
reaction groups other than the one containing reaction i. Make a backup copy
of a; and t; putative-

Step 9: Return to Step 1.

So in this algorithm, each reaction group operates independently for the duration of
timestep, using only local information. Once each reaction group has simulated the time
from t to t + timestep, then the changes in compounds numbers from all reaction groups
are totaled and a determination is made as to whether the simulation from t to t + timestep
was acceptable (more on this determination below). If acceptable, then the process
repeats itself. If unacceptable, then timestep is reduced and the algorithm tries again to
simulate from t to t-+ timestep.

The parallelization concept should be clear, namely the CPU time consuming parts of the
simulation — the stochastic event simulation in Step 2 — is divided up among multiple
processors. The other steps require the results from all the CPUs to be combined, so are
not parallelized, but are not as time-consuming. The larger the value of timestep, the
fewer times one needs to execute Steps 1 and 3 through 9.

The disadvantage of breaking up the reactions into groups is the loss of exactness in the
simulation. Under the assumptions of constant volume, a well-mixed volume, and
unchanging reaction rate constants, the Gillespie algorithm produces an exactly correct
possible path for the system through time. Exactly correct means that the probability of
the system taking each path is correctly simulated according to the assumptions. Thus,
whenever more than a single reaction group is used, the algorithm described above is
inexact.

The use of a variable timestep and the choices involved in the determination as to
whether a particular simulation from t to t + timestep was acceptable allows one to set the
degree of inexactness. Limiting timestep to smaller values will create a simulation that
approaches an exact simulation, but will run no faster (and in fact probably slower) than
an exact simulation.




Two conditions were considered to make a simulation from t to t + timestep
unacceptable. The obvious one is if the total number of molecules of a particular
compound becomes negative. The second criteria was if the number of molecules
changed too much, which is arbitrarily defined in the current code as increasing by more
than a factor of 2, or decreasing by more than a factor of 2 as long as the initial number of
molecules was more than 4. The more than 4 molecules part is needed to prevent any
change from 1 to 0 or O to 1 molecules being flagged unacceptable. A large change in the
number of any molecular species increases the inexactness of the simulation if that
species is used in multiple reaction groups.

The primary idea on how to divide up the reactions into different groups is that reactions
that frequently ‘“communicate” with each other are grouped together. Reactions
communicate whenever the substrate or product in one reaction participates in the other.
Using this approach to grouping the reactions will minimize the inexactness. Future
plans include implementing spatial reaction groups. Here, each reaction group would
represent the molecules and reactions that exist in a sub-volume of the entire system.




- Complexes

The final code does not incorporate the concepts in this section. Nevertheless, significant
effort went into the ideas and implementation of complexes in stochastic simulations. So
I feel it is worth briefly documenting these ideas. The use of complexes in stochastic
simulations remains an important and unsolved issue in the biological stochastic
simulation research community.

Motivation

Complexes of molecular species play a major role in the function of biological cells. The
most prominent is the binding of transcription factors to the regulatory elements of a
gene. Multi-state proteins and multi-protein complexes are also common. When the
individual transcription factors or proteins in a complex also have the capacity to have
sub-states (e.g. phosphorylation, non-covalent binding of small molecules), the number of
states for the complex grows exponentially.

A single gene with the ability to bind 10 transcription factors has 210, or 1024, different
possible states, resulting in potentially 1024 different transcription rates. Also, since each
state can experience 10 different binding reactions (one for each transcription factor),
there are potentially 10,240 reaction rates to specify. Ultimately, any cell simulation
software must define the multiple possible reactions for each state of such a complex. To
our knowledge, other efforts at cell simulation (Biospice, SBW, ECell) haven’t fully dealt
with this issue yet, and require the user to explicitly define these reactions, calling each
state of the complex a unique name.

Probably, some redundancy will exist and not every permutation of binding possibilities
produces a unique effect for transcription and other binding. However, one assumption
made to reduce the scale of the problem when developing cell simulation code, that
transcription factors act in a linear or additive manner, is unlikely to be true (Amone,
M.I. and Davidson, E.H. Development, 124: 1851, 1997).

To use complexes in code for cell simulation, three issues must be resolved:
1. .Specification of the state of the complex.

2. Specification of the overall function (such as transcription rate, translation rate,
etc.) of the complex for each state.

3. Specification of the binding rates for other elements of the complex for each state.

The use of binding sites as an aid to implementing complexes in cell simulation code is
explored below.

Specifying the State of the Complex

The most straightforward approach is to define each state of a complex as a separate
species with a unique name. This approach works well if the number of possible states for
the complex is not too large. Even if the complex involves a large number of discrete
elements, if they can only assemble in a fairly restricted sequence, then the number of




possible states may be manageably small. An example of a suitable complex would be
the phosphorylation state of a protein.

A variation on using unique names for each state is to enumerate the states. For example,
a protein with 2 phosphorylation sites will have states numbered 1 through 4.

Regarding binding sites, consider the following hypothetical complex:

Figure 1
Each letter represents a molecule, and the lines represent possible binding reactions.

If each binding reaction can occur independently, then even counting the number of
possible states for this complex is somewhat challenging. (There are 21, not counting
states with only a single molecule). The definition of a complex is also an issue. Is C-E
a permutation of the same complex as A-B?

If we use a simplifying assumption that A, D, and E can only exist in unmodified form—
i.e. they don’t bind to anything other than what is indicated in Fig. 1—then it isn’t
necessary to name the binding sites on them. The binding sites for this complex would
then be: site on B for A (call this B_st A for brevity), B_st D, B_st CF, C st B,
F st B, C st E, F st E, so a total of 7 binding sites. So complex A-B would be
specified as follows, with ‘emp’ signifying an empty site, ‘np’ signifying a site that isn’t
even present, and listing the status of the seven sites in the order above: A, emp, emp, np,
np, np, np. The ‘A’ is needed, instead of simply saying ‘occupied’ for cases like
B st CF, where a site can bind multiple molecules. What is the advantage of the 7
element binding site specification as opposed to the name A-B? Each approach will need
21 unique identifiers, and the binding site name is longer. One advantage is that one
doesn’t need to actually name and count all the states. The possible states that can arise
will be determined by the possible binding reactions. Another advantage is that the
specification itself contains information about which reactions are possible. For example,
if B st CF is occupied by C, then it is clear (and easy to code) that this instance of the
complex can’t bind F.

Specifying the Function of the Complex
To quantify and code the overall function of the complex, there is no shortcut to
specifying a different rate for each permutation that requires one. However, when




redundancy exists, that is when multiple permutations produce the same rate, then the use
of a binding site specification may be more convenient. For example, if one has an
enumeration of all the possible states, then the coding would say something like “states 1,
3, 4, 7-12, and 17 have rate x”. The binding site specification for the same situation
could be “if B_st A is occupied by A, and B_st D is empty, and all the other binding
sites can be in any state, then the rate is x”. The binding site specification is in fact a
“partial state” specification—only those aspects of the complex that determine the rate of
the process are specified. It isn’t necessarily shorter, but it does allow the possibility for
specifying reactions that are based on biological knowledge.

Specifying the Complex Formation Reactions

The coding approach for forming the complex is quite similar to those for the (typically)
single, overall function of the complex, except that more than one process is likely to be
possible for each permutation of the molecule. In other words, for any given state, there
will be several possible binding or unbinding reactions. 'Specifying the partial state of the
complex, such as saying a binding site is open, will again assist with constructing the
model.

Model Specification vs. Execution

Much of the benefit of using binding sites arises in the initial specification of the model.
The concept of binding sites is both intuitive to most people and familiar to biologists,
more so than enumerating permutations. The importance of being able to actually
describe the model in code should not be underestimated, as this is a very large
undertaking. However, the impact of using binding sites on code execution also must be
considered. It seems likely that while the partial state specification simplifies some
reaction descriptions, it forces the code to check through the existing states of the
complex to see if the partial state exists, thereby shifting some of the coding burden to
execution time instead of the pre-execution model description. A solution is to have a
pre-processing step that takes the binding-site model specification and translates it into an
enumerated state specification. Finally, this approach may be very useful if future
molecular dynamics simulations are fruitful in estimating binding rates between sites.

User Interface

The specification of biological processes involving complexes for modeling purposes will
necessarily be involved. To enable a person to describe the biological processes for the
model, the ability to use Microsoft Excel was added (Fig 2). In earlier versions, a
graphical interface (Simulink), or actual Matlab code was used. But the graphical
approach was not able to handle the layers of complexity required, and it is likely that
many end-users will not be proficient in Matlab. The spreadsheet approach makes
concepts such as reactions whose rates are conditional upon specific states of a molecular
complex easier to define.
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Simulation and Analysis of Prototype CLEs

CLE simulations

Simulation 1

The first was a demonstration of the possibility that stochastic gene expression can have
macroscopic effects. Eight identical cells were each filled with 2 genes. One gene
produces a protein that fluoresces red, and the other gene makes a protein that fluoresces
green. After letting the simulation run, some of the cells acquire a dominant red color,
some are primarily green, some are dark due to low expression of both, and some are
colors representing a mixture of red and green (Fig. 3).

Figure 3: (A) Eight identical cells at time = 0; (B) The same eight cells at time = 3 hrs.

Simulation 2 :

The second simulation was the initial attempt to design a cell that accomplishes a task.
The task was to recognize a specific external molecule, and then to fluoresce blue if that
molecule is present. If the external molecule is not present, then the cell fluoresces red.
This cell included a membrane bound receptor, signaling molecules that acted as
transcription factors, and degradation of the fluorescent proteins (Fig. 4). An animation
showing the result ifi an arfay of 63 cells was created (Fig. 5). ‘Some of the 63 cells did
not contain the blue gene.



Figure 4: Schematic of a simple detection CLE. E is the external molecule. R is the cytoplasmic receptor.
SM is the signaling molecule. SM_I is the inactive form of the signaling molecule. Red gene and
Blue _gene are the genes that produce proteins (no mRNA in this model). Red FP and Blue FP are the red

and blue fluorescent proteins. A ‘+’ indicates that the process is accelerated and a ‘-* indicates the process
is slowed.

Figure 5: An array of 63 cells containing the biochemical network shown in Fig. 4. Some of the cells did

not contain the blue gene. The external chemical (‘E’) was present from 30 to 80 min. (A) The simulation
at time = 0. (B) The simulation at time 80 min.




Simulation 3

This simulation is an extension of the Simulation 2 (Fig. 6). The requirement that the
production of proteins requires ATP was added. The generation of ATP from glucose
and ADP was added. The glucose is supplied outside the cell and must be transported
into the cell to provide the energy. A third gene to produce the membrane bound receptor
was added. This model represents an upgrade of the “detection cell-like entity” presented
above to one that has energy constraints. Some results of this model are presented in the
analysis section.

Anino-scnls

Estra

Cellular Membrane

Figure 6: Schematic of a more complete “Detection CLE”. Arrows represent reactions, and a + or —
symbol represent an enhancement or an inhibition of the reaction rate. EM = External Molecule. Via
activated signaling molecule (SM_A), the presence of EM increases expression of blue_fp and decreases

red fp.




Analysis of Stochastic Simulations

Michaelis-Menton study

Both in reviews of a recent proposal, and in discussions with collaborators, the necessity
of adding Michaelis-Menton saturable enzyme catalyzed reactions became apparent.
There are two ways to implement this type of process. One way is to use the single
saturable equation Rate = Vmax*C/(Km+C) where C is the concentration of the
substrate. The other way is to model explicitly the two reaction steps involved in a
simplified enzyme catalyzed reaction. The rate equation above is derived from an
analysis of these two reactions using a couple assumptions. The results are summarized
in the graphs below (Fig. 7). The y-axis is the rate of the reaction, and the x-axis is the
number of substrate molecules. Parts (A) and (C) represent 2 conditions for the two

reaction approach, and parts (B) and (D) represent the same 2 conditions for the single
rate

Simulation 1: ratio of substrate to enzyme 100:1 Simulation 2: ratio of substrate to enzyme 100:1
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Figure 7: Rate of reaction vs. substrate number. (A) and (C) use the two explicit reaction approach. (B)
and (D) use the single familiar Michaelis-Menten rate equation. (A) and (B) have a high substrate to
enzyme ratio, whereas (C) and (D) have a lower ratio.

equation approach. One can see that in some cases, (A) vs (B), the approaches produce
equivalent results. However in other cases, (C) vs. (D), the results differ and one must
use the two reaction approach (C), which is more realistic. This occurs because an
assumption used to derive the single rate equation is violated, specifically the assumption
that the amount of the substrate-enzyme complex remains at a constant level at all times.




However, the two reaction approach requires 5-10 times as much cpu time, so eventually
one would like to find a way to switch between the two approaches depending on
whether the assumptions hold.

Baseline Fluctuations

Simulation 3 (Figure 6) as described above was analyzed in a couple of different ways.
The first analysis was to run the simulation multiple times under identical conditions to
investigate the degree of fluctuations in some key output levels. This simulation entails a
period from 0 to 2000 s in which no external molecule is present, then a period from 2000
to 5000 s when external molecule is present, followed by a period from 5000 to 8000 s
with no external molecule. Some of these results are expressed in the histograms below.
The first one depicts the average level of blue protein during the period when external
molecule is present (Figure 8A). The y axis is the number of runs (out of 30 total), and
the x-axis is the average number of molecules of blue protein during the time period from
2000 to 5000 s. The second one depicts the average level of red protein during the pericd
from 0 to 2000 s. One can see a large variation spanning almost 400 molecule numbers
in the amount of both proteins.
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Figure 8. Histogram of the levels of blue and red protein from 30 runs of an identical stochastic SImulatlon
The y-axis is the number of runs...(A) The number of blue protein molecules between 2000 and 5000 s. (B)..
The number of red protein molecules between 0 and 2000 s.




We also studied the speed of response to the introduction of external molecule. We fit

_ either a polynomial or a spline to the blue signal vs. time curves, and then identified the
time required to reach 50% of the average blue signal. The histogram of these response
times for the polynomial fit are presented in Fig. 9. Again, the spread in data is quite
large, and indicates that serious consideration will need to be given to minimizing
fluctuations and variability in the design of such devices if uniform responses are
required (which is likely).
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The analysis of stochastic simulations remains in its infancy compared to the analysis of
traditional deterministic simulations. This histogram approach is one way to summarize
the data.

Parameter Optimization

A second analysis of Simulation 3 was to begin the process of adjusting the parameters of
the model so as to optimize the performance of-the-detection task. We chose 5.
parameters to vary, and identified a low and a high value for each parameter. This
resulted in 32 permutations, and S simulations were run for each permutation. The 5
parameters varied were: (1) number of copies of blue producing gene [1 or 10]; (2)
number of copies of red producing gene [1 or 10]; (3) number of signaling molecules [30
or 300]; (4) initial number of EM-receptor molecules [30 or 300]; and g ) degradatmn
rates of mRNA and protems [low=03x 107 s for protein and 0.3 x 10® s for mRNA
and high = 3 x 107 s for protein and 3 x 10° s for mRNA]. Graphs and summary
tables were produced. Figure 10 illustrates the effect of two of the parameters on the
amount of blue fluorescent protein. One can see that a high degradation rate (top row)
tended to depress the amount of blue signal, as you might expect. Also, one can see that
a low number of signaling molecules tended to produce “spikes” in the blue protein
signal.
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There was one situation which had a nearly optimal response (if we consider an optimal
response to be when both the blue_fp/ red_fp ratio is maximum and the response time is
minimum). This occurred when number of copies of blue gene was high, number of
copies of red gene was low, the number of initial molecules for EM-receptor was low, the
number of signaling molecules was high, and the degradation rates were high (Fig. 11).
These studies represent our first attempt at optimizing a complex system like a CLE, and

we expect to devise more mathematlcal and efficient optimization strategies in the future.
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Metabolic Pathway Analysis and Sustained Stress

Bioinformatic Database with Toxicological Emphasis

Since most of the work on this subject is presented in the published - manuscript
(Karpinets TV, Foy BD, and Frazier JM. Bioinformatics, 20: 507-517, 2004), this
summary will be kept brief. A Microsoft Access database on the genes and protein
products from the Affymetrix rat toxicology gene chip has been produced. This database
divides up the 1031 probes on the gene chip and assigns each one to categories labeled
functions, pathways, and location. Function refers to their cellular function, such as
detoxification, and each probe is assigned to a single function. Pathway refers to
recognized biochemical pathways, and many probes participate in multiple pathways.
Location refers to sub-compartment within the cell. Furthermore, the database includes
scientific references and annotations to assist with understanding a particular probe’s
assignment to the above categories. This database has been distributed to several
colleagues in the Air Force and at AFIT.

This database was applied to a mathematical clustering of genes from rat hepatocytes
eéxposed to hydrazine. The mathematical clustering was developed to identify those
probes that experienced significant changes upon exposure to hydrazine. The hydrazine
experiment involved gene chip analysis at multiple time points after dosing. A
“Representability Index” was developed to highlight those functions, pathways, or
locations that had a significant proportion of probes altered.

Sustained Stress and Cancer Initiation
The above database project led to the development of a schematic model for the major
pathways involved in the cell’s response to hydrazine. This represents a top-down
approach to understanding a cellular reaction network — taking an actual biological
system, combining it with large scale biological data from gene chips and protein arrays,
and attempting to quantitatively understand the time series of events. Eventually this will
be merged with the bottom-up approach of a CLE simulation where each pathway is
dynamically simulated.

It was recognized that many of the pathways altered by hydrazine stress are also
prominent in tumorigenic transformations. Combining this with the concept of natural
selection for rapidly dividing cells in a stressful environment led to the concept of a
tumor development model which has been published (Karpinets TV, Foy BD.
Carcinogenesis, 26(8): 1323-1334, 2005; and Karpinets TV, Foy BD. Joumal of
Theoretical Biology, 227: 253-264, 2004). This is a model of numerous interacting
biochemical pathways, at both the metabolite and gene levels. The basic statement in the
model is that mutations acquired by tumor cells are not caused directly by external DNA
damaging agents, but instead are produced by the cell itself as an output of a Mutator
Response similar to the bacterial “SOS response” and characterized by the initiation of
error-prone cell cycle progression and an elevated rate of mutation. The proposed
mechanism is described at the level of involved metabolic pathways and proteins and
substantiated by related experimental data available in the literature.




Interactions/Transitions
Presentations
Foy BD, Implementation of Biochemical Complexes in Stochastic Simulations,
International Conference on Systems Biology, Heidelberg, Germany, October, 2004.

Kelly-Loughnane N, Thrash ME, Foy BD, Frazier JM. A Gene Expression Model of
Glutathione Metabolism in Primary Rat Hepatocytes. International Conference on
Systems Biology, St. Louis, November 5-9, 2003 (Abstract and Poster).

Foy BD. Simulating the Interactions of Genes, Proteins, and Metabolites, presented to
SPS students, Oct 17, 2003 (Talk).

Foy BD. Mathematical Modeling of Biology, presentation to new Ph.D. students in
WSU Biomedical Sciences program. September 23, 2003 (Talk).

Foy, BD. Specification of Molecular Complexes in Cell Simulations. 3™
International Conference on Systems Biology, Stockholm, Sweden, Dec. 2002 (poster
presented)

Consultative/Advisory Functions
Served on search committee for opening in the Center for Cell Dynamics and
Engineering. This was an international search for a faculty member to assist with the
experimental creation of a CLE to be appointed at WSU. Money for this position was
from Wright Patterson AFB and State of Ohio.

Regularly attended CLE lab meetings at Wright Patterson AFB and was engaged in
additional discussions with Dr. John Frazier about CLE modeling

Transitions
The toxicogenomic database developed in Microsoft Access and published was
delivered to Dr. Dennis Quinn of the Air Force Institute of Technology.

Version 1.2 of my cellular simulation tools was delivered to Dr. John Frazier of the
Human Effectiveness directorate for use with upcoming initial CLE in a test-tube
experiments.



Appendix 1

Main Program Function Hierarchy

All names below are file names without the ‘‘m’ extension. The words ‘script’ or
‘function’ in parenthesis after the name refers to whether the file is a Matlab script or a
Matlab function file. The ‘user-edit’ in parenthesis indicates that it is a script file that the
user is expected to edit to create the model.

bns (script)
- other_constants (script)
- storing_and _plotting (script, user-edit)
- general constants (script, user-edit)
- initial use dialogue (script)
- read_cmpds (script)
- cmpd_defs 0001 (script, user-edit)
- cmpd_defs 0002, etc. (script, user-edit)
- read_reactions (script)
- reactions_0001 (script, user-edit)
- reactions_0002, etc. (script, user-edit)
- read_reaction_constants (script)
- reaction_constants_0001 (script, user-edit)
- reaction_constants 0002, etc. (script, user-edit)
- prepare_rxn_groups (script)
- prepare_binding_rxn (function)
- build_comps (function)
- find_comp_id (function)
- prepare_nth_order_rxn (function)
- build_comps (function)
- find_comp_id (function)
- prepare_transvl _rxn (function)
- build_comps (function)
- find comp_id (function)
- prepare_genmm_rxn (function)
- build_comps (function)
- find_comp_id (function)
- runsim (function)
- *continued on next page*
- make plots (function)
- save_data_to_file (function)
- create_cmpd_matrix (function)




- runsim (function)
- Init_rxn_grp (function)
- create_cmpd_matrix (function)
- update rxn_grp (function)
- update_reaction_probabilities (function)
- calc_rxn_prob (function)
-rxn_prob_binding (function)
- rxn_prob_unbinding (function)
-rxn_prob_n_order (function)
- rxn_prob_transvl (function)
- rxn_prob_genmm (function)
- save_rxngrp_data (function)
- store_data (function)
- decide_if make plots (function)
- make plots (function)
- assign_official _data to reaction_ group (function)
- execute _reaction_group (function)
- find next reaction (function)
- execute_reaction (function)
- execute_binding (function)
- execute_unbinding (function)
- execute_normal (function)
- update reaction_probabilities (function)
- calc_rxn_prob (function)
- rxn_prob_binding (function)
- rxn_prob_unbinding (function)
- rxn_prob_n_order (function)
- rxn_prob_transvl (function)
- rxn_prob_genmm (function)
- tally changes in _cmpd_numbers (function)
- check last timestep (function)
- make compound numbers_official (function)
- update rxn_grp (function)
- update_reaction_probabilities (function)
- calc_rxn_prob (function)
- rxn_prob_binding (function)
- rxn_prob_unbinding (function)
- rxn_prob_n_order (function)
- rxn_prob_transv1 (function)
- rxn_prob_genmm (function)
- save_rxngrp data (function)




